閱讀排行
更多
- 1產(chǎn)能減少2萬噸!住友化學(xué)宣布停產(chǎn)
- 2威星智能“智能計(jì)量表具終端未來工廠建設(shè)項(xiàng)目”等兩個募投項(xiàng)目延期
- 3工業(yè)和信息化部關(guān)于印發(fā)《水泥玻璃行業(yè)產(chǎn)能置換實(shí)施辦法(2024年本)》的通知
- 4擬投資1.1億元,索是化工5000噸/年粉末涂料用助劑項(xiàng)目喜封金頂
- 5協(xié)會秘書長劉長雷帶隊(duì)調(diào)研巴宿科技
- 6厲害! 深加工全工種及兼職安全員高手齊聚內(nèi)江 現(xiàn)場一幕幕太精彩!
- 7擁抱“一帶一路”!新明珠集團(tuán)助力世界級龍舟賽事,讓民族品牌走出國際范
- 8上市儀器儀表企業(yè)三季報密集出爐!誰在爭先,誰在嘆氣?
- 9 2024年前9個月化學(xué)原料和化學(xué)制品制造業(yè)利潤同比下降4%
企業(yè)直播
更多
推薦展會
更多
國家自然科學(xué)基金支持利用人工智能方法分析譜學(xué)和影像數(shù)據(jù)
導(dǎo)讀:近日,國家自然科學(xué)基金委員會發(fā)布可解釋、可通用的下一代人工智能方法重大研究計(jì)劃2023年度項(xiàng)目指南,將重點(diǎn)支持“高精度、可解釋的譜學(xué)和影像數(shù)據(jù)分析方法”研究方向。
【化工儀器網(wǎng) 行業(yè)百態(tài)】近日,國家自然科學(xué)基金委員會發(fā)布可解釋、可通用的下一代人工智能方法重大研究計(jì)劃2023年度項(xiàng)目指南。其中提到,2023年度資助的重點(diǎn)支持項(xiàng)目包括“高精度、可解釋的譜學(xué)和影像數(shù)據(jù)分析方法”。
可解釋、可通用的下一代人工智能方法重大研究計(jì)劃面向人工智能發(fā)展國家重大戰(zhàn)略需求,以人工智能的基礎(chǔ)科學(xué)問題為核心,發(fā)展人工智能新方法體系,促進(jìn)我國人工智能基礎(chǔ)研究和人才培養(yǎng),支撐我國在新一輪國際科技競爭中的主導(dǎo)地位。
該計(jì)劃以深度學(xué)習(xí)的基本原理,可解釋、可通用的下一代人工智能方法,面向科學(xué)領(lǐng)域的下一代人工智能方法的應(yīng)用三大科學(xué)問題為核心,2023年計(jì)劃資助培育項(xiàng)目25~30項(xiàng),直接費(fèi)用資助強(qiáng)度約為80萬元/項(xiàng),資助期限為3年,研究方向包括“深度學(xué)習(xí)的表示理論和泛化理論”等10個;計(jì)劃資助重點(diǎn)支持項(xiàng)目6~8項(xiàng),直接費(fèi)用資助強(qiáng)度約為300萬元/項(xiàng),資助期限為4年,研究方向包括“經(jīng)典數(shù)值方法與人工智能融合的微分方程數(shù)值方法”等8個。
其中,重點(diǎn)支持項(xiàng)目的“高精度、可解釋的譜學(xué)和影像數(shù)據(jù)分析方法”研究方向要求:發(fā)展光譜、質(zhì)譜和各類影像數(shù)據(jù)處理的人工智能方法。建立融合模擬與實(shí)驗(yàn)數(shù)據(jù)的可解釋“譜-構(gòu)-效”模型,開發(fā)人工智能驅(qū)動的光譜實(shí)時解讀與反演軟件;基于AlphaFold等蛋白結(jié)構(gòu)預(yù)測方法,建立高精度冷凍電鏡蛋白結(jié)構(gòu)反演算法等。
人工智能與譜學(xué)以及各類成像技術(shù)的結(jié)合將有效提高分析數(shù)據(jù)的處理效率、精度等,還能夠讓分析數(shù)據(jù)處理環(huán)節(jié)的高度勞動密集型流程實(shí)現(xiàn)自動化。目前,國外儀器行業(yè)龍頭廠商都已經(jīng)開始利用人工智能技術(shù)分析儀器獲得的數(shù)據(jù)。我國在這一方面提供國家自然科學(xué)基金支持也有助于國產(chǎn)儀器技術(shù)的進(jìn)一步發(fā)展,縮小與國外儀器廠商的差距。
2023年度資助研究方向
(一)培育項(xiàng)目。
圍繞上述科學(xué)問題,以總體科學(xué)目標(biāo)為牽引,擬以培育項(xiàng)目的方式資助探索性強(qiáng)、選題新穎的申請項(xiàng)目,研究方向如下:
1. 深度學(xué)習(xí)的表示理論和泛化理論。
研究卷積神經(jīng)網(wǎng)絡(luò)(以及其它帶對稱性的網(wǎng)絡(luò))、圖神經(jīng)網(wǎng)絡(luò)、transformer網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)、低精度神經(jīng)網(wǎng)絡(luò)、動態(tài)神經(jīng)網(wǎng)絡(luò)、生成擴(kuò)散模型等模型的泛化誤差分析理論、魯棒性和穩(wěn)定性理論,并在實(shí)際數(shù)據(jù)集上進(jìn)行檢驗(yàn);研究無監(jiān)督表示學(xué)習(xí)、預(yù)訓(xùn)練-微調(diào)范式等方法的理論基礎(chǔ),發(fā)展新的泛化分析方法,指導(dǎo)深度學(xué)習(xí)模型和算法設(shè)計(jì)。
2. 深度學(xué)習(xí)的訓(xùn)練方法。
研究深度學(xué)習(xí)的損失景觀,包括但不限于:臨界點(diǎn)的分布及其嵌入結(jié)構(gòu)、極小點(diǎn)的連通性等,深度學(xué)習(xí)中的非凸優(yōu)化問題、優(yōu)化算法的正則化理論和收斂行為,神經(jīng)網(wǎng)絡(luò)的過參數(shù)化和訓(xùn)練過程對于超參的依賴性問題、基于極大值原理的訓(xùn)練方法、訓(xùn)練時間復(fù)雜度等問題,循環(huán)神經(jīng)網(wǎng)絡(luò)記憶災(zāi)難問題、編碼-解碼方法與Mori-Zwanzig方法的關(guān)聯(lián)特性,發(fā)展收斂速度更快、時間復(fù)雜度更低的訓(xùn)練算法及工具,建立卷積網(wǎng)絡(luò)、Transformer網(wǎng)絡(luò)、擴(kuò)散模型、混合專家模型等特定模型的優(yōu)化理論及高效訓(xùn)練方法,深度學(xué)習(xí)優(yōu)化過程對泛化性能的影響等。
3. 微分方程與機(jī)器學(xué)習(xí)。
研究求解微分方程正反問題及解算子逼近的概率機(jī)器學(xué)習(xí)方法;基于生成式擴(kuò)散概率模型的物理場生成、模擬與補(bǔ)全框架;基于微分方程設(shè)計(jì)新的機(jī)器學(xué)習(xí)模型,設(shè)計(jì)和分析網(wǎng)絡(luò)結(jié)構(gòu)、加速模型的推理、分析神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程。
面向具有實(shí)際應(yīng)用價值的反問題,研究機(jī)器學(xué)習(xí)求解微分方程的魯棒算法;研究傳統(tǒng)微分方程算法和機(jī)器學(xué)習(xí)方法的有效結(jié)合方法;研究高維微分方程的正則性理論與算法;研究微分方程解算子的逼近方法(如通過機(jī)器學(xué)習(xí)方法獲得動理學(xué)方程、彈性力學(xué)方程、流體力學(xué)方程、Maxwell方程以及其它常用微分方程的解算子);融合機(jī)器學(xué)習(xí)方法處理科學(xué)計(jì)算的基礎(chǔ)問題(求解線性方程組、特征值問題等)。
4. 隱私保護(hù)的機(jī)器學(xué)習(xí)方法。
針對主流機(jī)器學(xué)習(xí)問題,結(jié)合安全多方計(jì)算、全同態(tài)加密、零知識證明等方法構(gòu)建具備實(shí)用性的可信機(jī)器學(xué)習(xí)環(huán)境。發(fā)展隱私保護(hù)協(xié)同訓(xùn)練和預(yù)測方法,發(fā)展加密和隱私計(jì)算環(huán)境的特征聚類、查詢和多模型匯聚方法,發(fā)展加密跨域遷移學(xué)習(xí)方法,發(fā)展面向?qū)箻颖?、后門等分析、攻擊、防御和修復(fù)方法,研究機(jī)器學(xué)習(xí)框架對模型干擾、破壞和控制方法,發(fā)展可控精度的隱私計(jì)算方法。
5. 圖神經(jīng)網(wǎng)絡(luò)的新方法。
利用調(diào)和分析、粒子方程等數(shù)學(xué)理論解決深度圖網(wǎng)絡(luò)的過度光滑、過度擠壓等問題,針對多智能體網(wǎng)絡(luò)協(xié)同控制、藥物設(shè)計(jì)等重要應(yīng)用場景設(shè)計(jì)有效的、具有可解釋性的圖表示學(xué)習(xí)方法。
6. 腦科學(xué)啟發(fā)的新一代人工智能方法。
發(fā)展對大腦信息整合與編碼的定量數(shù)學(xué)刻畫和計(jì)算方法,設(shè)計(jì)新一代腦啟發(fā)的深度神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò),提高傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的表現(xiàn)性能;建立具有樹突幾何結(jié)構(gòu)和計(jì)算功能的人工神經(jīng)元數(shù)學(xué)模型,并用于發(fā)展包含生物神經(jīng)元樹突計(jì)算的深度神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò),提高傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的表現(xiàn)性能;發(fā)展包含多種生物神經(jīng)元生理特征和生物神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)特點(diǎn)的人工神經(jīng)網(wǎng)絡(luò)及其訓(xùn)練算法,解決圖像識別、圖像恢復(fù)、醫(yī)學(xué)圖像重構(gòu)、地震波檢測等應(yīng)用問題。
7. 數(shù)據(jù)驅(qū)動與知識驅(qū)動融合的人工智能方法。
建立數(shù)據(jù)驅(qū)動的機(jī)器學(xué)習(xí)與知識驅(qū)動的符號計(jì)算相融合的新型人工智能理論和方法,突破神經(jīng)網(wǎng)絡(luò)模型不可解釋的瓶頸;研究知識表示與推理框架、大規(guī)模隱式表達(dá)的知識獲取、多源異構(gòu)知識融合、知識融入的預(yù)訓(xùn)練模型、知識數(shù)據(jù)雙驅(qū)動的決策推理等,解決不同場景的應(yīng)用問題。
8. 生物醫(yī)藥領(lǐng)域的人工智能方法。
發(fā)展自動化程度高的先導(dǎo)化合物優(yōu)化方法,建立生物分子序列的深度生成模型,準(zhǔn)確、高效生成滿足特定條件(空間結(jié)構(gòu)、功能、物化性質(zhì)、蛋白環(huán)境等)的分子序列;發(fā)展蛋白質(zhì)特征學(xué)習(xí)的人工智能新方法,用于蛋白質(zhì)功能、結(jié)構(gòu)、氨基酸突變后親和力與功能改變等預(yù)測以及蛋白質(zhì)與生物分子(蛋白、肽、RNA、配體等)相互作用預(yù)測;針對免疫性疾病等臨床表現(xiàn)差異大、預(yù)后差等問題,發(fā)展序列、結(jié)構(gòu)等抗體多模態(tài)數(shù)據(jù)融合和預(yù)測的人工智能模型,用于免疫性疾病的早期診斷和臨床分型等。
9. 科學(xué)計(jì)算領(lǐng)域的人工智能方法。
針對電子多體問題,建立薛定諤方程數(shù)值計(jì)算、第一性原理計(jì)算、增強(qiáng)采樣、自由能計(jì)算、粗?;肿觿恿W(xué)等的人工智能方法,探索人工智能方法在電池、電催化、合金、光伏等體系研究中的應(yīng)用。
針對典型的物理、化學(xué)、材料、生物、燃燒等領(lǐng)域的跨尺度問題和動力學(xué)問題,通過融合物理模型與人工智能方法,探索復(fù)雜體系變量隱含物理關(guān)系的挖掘方法,建立構(gòu)效關(guān)系的數(shù)學(xué)表達(dá),構(gòu)建具有通用性的跨尺度人工智能輔助計(jì)算理論和方法,解決典型復(fù)雜多尺度計(jì)算問題。
10. 人工智能驅(qū)動的下一代微觀科學(xué)計(jì)算平臺。
發(fā)展基于人工智能的高精度、高效率的第一性原理方法;面向物理、化學(xué)、材料、生物等領(lǐng)域的實(shí)際復(fù)雜問題,建立多尺度模型,實(shí)現(xiàn)高精度、大尺度和高效率的分子動力學(xué)模擬方法;探索建立人工智能與科學(xué)計(jì)算雙驅(qū)動的“軟-硬件協(xié)同優(yōu)化”方法和科學(xué)計(jì)算專用平臺。
(二)重點(diǎn)支持項(xiàng)目。
圍繞核心科學(xué)問題,以總體科學(xué)目標(biāo)為牽引,擬以重點(diǎn)支持項(xiàng)目的方式資助前期研究成果積累較好、對總體科學(xué)目標(biāo)在理論和關(guān)鍵技術(shù)上能發(fā)揮推動作用、具備產(chǎn)學(xué)研用基礎(chǔ)的申請項(xiàng)目,研究方向如下:
1. 經(jīng)典數(shù)值方法與人工智能融合的微分方程數(shù)值方法。
設(shè)計(jì)融合經(jīng)典方法和人工智能方法優(yōu)勢的新型微分方程數(shù)值方法。針對經(jīng)典數(shù)值方法處理復(fù)雜區(qū)域的困難和人工智能方法效果的不確定性、誤差的不可控性,發(fā)展兼具穩(wěn)定收斂階和簡便性的新型算法;針對彈性力學(xué)、流體力學(xué)等微分方程,探索其解的復(fù)雜度與逼近函數(shù)表達(dá)能力之間的定量關(guān)系;開發(fā)針對三維含時問題的高效并行算法,并應(yīng)用到多孔介質(zhì)流等問題;發(fā)展求解微分方程反問題的新算法并用于求解實(shí)際問題。
2. 復(fù)雜離散優(yōu)化的人工智能求解器。
面向混合整數(shù)優(yōu)化、組合優(yōu)化等離散優(yōu)化問題,建立人工智能和領(lǐng)域知識結(jié)合的可通用的求解器框架;建立高精度求解方法和復(fù)雜約束問題的可控近似求解方法;發(fā)展超大規(guī)模并行求解方法和基于新型計(jì)算架構(gòu)的加速方法;在復(fù)雜、高效軟件設(shè)計(jì)等場景開展可靠性驗(yàn)證。
3. 開放環(huán)境下多智能體協(xié)作的智能感知理論與方法。
針對多模態(tài)信息融合中由于數(shù)據(jù)視角、維度、密度、采集和標(biāo)注難易程度不同而造成的融合難題,研究基于深度學(xué)習(xí)的融合模型,實(shí)現(xiàn)模態(tài)一致性并減少融合過程中信息損失;研究輕量級的模態(tài)間在線時空對齊方法;研究能容忍模態(tài)間非對齊狀態(tài)下的融合方法;研究用易采集、易標(biāo)注模態(tài)數(shù)據(jù)引導(dǎo)的難采集、難標(biāo)注模態(tài)數(shù)據(jù)的預(yù)訓(xùn)練與微調(diào)方法;研究大規(guī)模多任務(wù)、多模態(tài)學(xué)習(xí)的預(yù)訓(xùn)練方法,實(shí)現(xiàn)少樣本/零樣本遷移。
4. 可通用的專業(yè)領(lǐng)域人機(jī)交互方法。
針對多變輸入信號,建立自動化多語種語言、圖像、視頻等多模態(tài)數(shù)據(jù)生成模型,發(fā)展可解釋的多輪交互決策方法;建立機(jī)器學(xué)習(xí)和知識搜索的有效結(jié)合方法;探索新方法在不同專業(yè)領(lǐng)域場景中的應(yīng)用。
5. 下一代多模態(tài)數(shù)據(jù)編程框架。
發(fā)展面向超大規(guī)模多模態(tài)數(shù)據(jù)(文本、圖像、視頻、向量、時間序列、圖等)的存儲、索引、聯(lián)合查詢和分析方法。發(fā)展一體化的多模態(tài)數(shù)據(jù)編程框架,建立自動化數(shù)據(jù)生成、評估和篩選方法,實(shí)現(xiàn)自動知識發(fā)現(xiàn)和自動模型生成性能的突破,并完成超大規(guī)模、多模態(tài)數(shù)據(jù)集上的可靠性驗(yàn)證。
6. 支持下一代人工智能的開放型高質(zhì)量科學(xué)數(shù)據(jù)庫。
研究跨領(lǐng)域、多模態(tài)科學(xué)數(shù)據(jù)的主動發(fā)現(xiàn)、統(tǒng)一存儲和統(tǒng)一管理方法。研究基于主動學(xué)習(xí)的科學(xué)數(shù)據(jù)、科技文獻(xiàn)知識抽取與融合方法。研究跨學(xué)科、多尺度科學(xué)數(shù)據(jù)的知識對象標(biāo)識化、語義化構(gòu)建方法。研究融合領(lǐng)域知識的多模態(tài)預(yù)訓(xùn)練語言模型,開發(fā)通用新型數(shù)據(jù)挖掘方法。形成具有一定國際影響力的覆蓋生命、化學(xué)、材料、遙感、空間科學(xué)等領(lǐng)域的高質(zhì)量、通用型科學(xué)數(shù)據(jù)庫,為人工智能驅(qū)動的科學(xué)研究新范式提供基礎(chǔ)科學(xué)數(shù)據(jù)資源服務(wù)。
7. 高精度、可解釋的譜學(xué)和影像數(shù)據(jù)分析方法。
發(fā)展光譜、質(zhì)譜和各類影像數(shù)據(jù)處理的人工智能方法。建立融合模擬與實(shí)驗(yàn)數(shù)據(jù)的可解釋“譜-構(gòu)-效”模型,開發(fā)人工智能驅(qū)動的光譜實(shí)時解讀與反演軟件;基于AlphaFold等蛋白結(jié)構(gòu)預(yù)測方法,建立高精度冷凍電鏡蛋白結(jié)構(gòu)反演算法等。
8. 高精度、可解釋的生物大分子設(shè)計(jì)平臺。
建立人工智能驅(qū)動的定向進(jìn)化方法,助力生物大分子優(yōu)化設(shè)計(jì)。發(fā)展兼顧數(shù)據(jù)推斷和物理機(jī)制篩選雙重優(yōu)勢且擴(kuò)展性高的人工智能方法,輔助物理計(jì)算高維勢能面搜索。在醫(yī)用酶及大分子藥物設(shè)計(jì)上助力定向進(jìn)化實(shí)驗(yàn),將傳統(tǒng)實(shí)驗(yàn)時間降低50%以上,通過人工智能設(shè)計(jì)并濕實(shí)驗(yàn)合成不小于3款高活性、高穩(wěn)定性、高特異性的新型醫(yī)用蛋白。發(fā)展基于人工智能的新一代生物大分子力場模型,大幅提升大分子模擬計(jì)算的可靠性,針對生物、醫(yī)藥、材料領(lǐng)域中的分子設(shè)計(jì)問題,實(shí)現(xiàn)化學(xué)精度的大尺度分子動力學(xué)模擬。
上一篇:主營業(yè)務(wù)發(fā)力 鳳凰光學(xué)2022年?duì)I收增長17.78%
下一篇:周盤點(diǎn)丨首個國家碳計(jì)量中心成立分支機(jī)構(gòu),企業(yè)年報批量發(fā)布,還有個環(huán)保展再不報名就晚了!
版權(quán)與免責(zé)聲明:1.凡本網(wǎng)注明“來源:興旺寶裝備總站”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-興旺寶合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:興旺寶裝備總站”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。 2.本網(wǎng)轉(zhuǎn)載并注明自其它來源(非興旺寶裝備總站)的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)或和對其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。 3.如涉及作品內(nèi)容、版權(quán)等問題,請?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
相關(guān)新聞
昵稱 驗(yàn)證碼 請輸入正確驗(yàn)證碼
所有評論僅代表網(wǎng)友意見,與本站立場無關(guān)