濰坊中能美亞環(huán)保設備有限公司

初級會員·1年

聯系電話

18663629262

您現在的位置: 濰坊中能美亞環(huán)保設備有限公司>>污水處理設備>>畜禽養(yǎng)殖污水處理設備>> 養(yǎng)牛場污水處理價格
養(yǎng)牛場污水處理價格
參考價: 面議
具體成交價以合同協(xié)議為準
  • 產品型號
  • 品牌
  • 生產商 廠商性質
  • 濰坊市 所在地

訪問次數:15更新時間:2022-04-09 22:50:01

聯系我們時請說明是興旺寶上看到的信息,謝謝!

廢水處理設備

污水處理設備

地埋式生活污水處理設備

醫(yī)院醫(yī)療廢水處理設備

屠宰廢水處理設備

小型廢水處理設備

MBBR/NLB反應器

二氧化氯發(fā)生器

MBR膜生物反應器

養(yǎng)殖場廢水處理

次氯酸鈉投加器

實驗室污水處理

污水提升泵站

GRP玻璃鋼預制泵站

初級會員·1年
人:
曾工
話:
18663629262
機:
18663629262
真:
0536-8753001
址:
山東濰坊勝利街2798號
址:

掃一掃訪問手機商鋪

產品簡介
養(yǎng)牛場污水處理價格 養(yǎng)殖污水概況
  隨著我國畜禽業(yè)的迅猛發(fā)展,養(yǎng)殖污水污染將不斷加劇,其污染防治迫在眉睫。養(yǎng)殖污水具有典型的“三高"特征,CODCR高達3000~12000MG/L,氨氮高達800~2200MG/L,SS超標數十倍。限于養(yǎng)殖業(yè)是薄利行業(yè),目前的處理工藝僅能針對CODCR的大幅削減,而對氨氮達標排放尚存在很大的技術經濟難度。規(guī)?;笄蒺B(yǎng)殖污水處理目前已引起養(yǎng)殖場業(yè)主及有關部門的高
產品介紹

養(yǎng)牛場污水處理價格  針對水量大、運輸問題,可拆分后靈活組裝。針對水量大、運輸問題,可拆分后靈活組裝。 對于大水量,可以把設備拆分后,運輸至現場后再進行組裝;對于大水量,可以把設備拆分后,運輸至現場后再進行組裝; 根據污水量可單臺使用,也可多臺并聯組成小型污水處理站根據污水量可單臺使用,也可多臺并聯組成小型污水處理站。 地埋式污水處理裝置的應用 地埋式污水處理裝置的應用 與生活污水類似的各種工業(yè)污水

畜禽養(yǎng)殖業(yè)是我國農業(yè)的支柱產業(yè),在維持畜產品穩(wěn)定供給、提高人民生活水平方面發(fā)揮著重要作用.隨著畜禽養(yǎng)殖業(yè)的集約化、規(guī)模化發(fā)展,為提高動物生產性能、防治疾病,養(yǎng)殖過程添加了一定量的重金屬與抗生素.據統(tǒng)計2006年我國獸用抗生素消耗9.7萬噸,占全國抗生素總用量的54%.而不被機體吸收、降解的抗生素排放到環(huán)境中,據Zhou等估算我國每年生豬和奶牛養(yǎng)殖場抗生素排放量分別為3080和164 t.而養(yǎng)殖業(yè)每年重金屬排放銅、鋅分別為2397.23 t、4756.94 t.畜禽養(yǎng)殖糞污表現出重金屬與抗生素復合污染特征和研究發(fā)現畜禽養(yǎng)殖過程抗生素和重金屬使用與養(yǎng)殖場及其周邊環(huán)境抗性基因豐度的提高呈正相關關系.畜禽養(yǎng)殖糞便、污水成為抗性基因的重要蓄積庫.抗性基因作為一種新型污染物,可能對公共健康、食品和飲用水安全構成威脅.胡永飛等對162個健康人腸道微生物宏基因組(Metagenome)中的耐藥基因進行了深入分析,發(fā)現四環(huán)素抗性基因的豐度高,而人類腸道四環(huán)素抗性基因極有可能來自于獸用抗生素的使用以及抗性基因沿食物鏈的傳播.

  2014年世界衛(wèi)生組織發(fā)布的《抗生素耐藥報告》明確指出抗生素抗性是21世紀公共衛(wèi)生的嚴峻挑戰(zhàn),針對動物生產應監(jiān)督和促進畜禽業(yè)的合理用藥,并強調了食用動物攜帶的抗生素抗性及其在食物鏈上的傳播方面數據的缺乏,應加強此方面的研究.我國和主要發(fā)達推行畜禽養(yǎng)殖廢水的生物處理、農田利用等工藝模式,然而畜禽養(yǎng)殖廢水攜帶的抗性基因在此過程的轉歸,以及抗性基因是否存在沿食物鏈的傳播風險,亟需開展相關研究.

  因此,本研究通過查閱國內外文獻,總結歸納了畜禽養(yǎng)殖廢水含有的抗生素抗性基因在生物處理、農田利用過程的變化規(guī)律,并對今后的研究重點和方向提出建議和展望,以期為揭示抗性基因消減規(guī)律,降低畜禽養(yǎng)殖廢水抗性基因傳播風險提供借鑒.

  2 畜禽養(yǎng)殖廢水中抗生素抗性基因分布

  抗性基因根據其抗性機制不同分為3類,分別為降低細胞內抗生素濃度(包括降低細胞通透性或外排)、靶向改變(包括靶向保護或靶向突變)以及抗生素失活.畜禽養(yǎng)殖業(yè)抗生素的大量使用引起養(yǎng)殖環(huán)境抗性基因豐度的提高,抗性基因與抗生素之間存在相關關系.檢測了我國3個省36份豬場環(huán)境樣品(包括糞便、堆肥、土壤)中的149種抗性基因,結果表明檢出的抗性基因對應的抗生素分別為大環(huán)內脂*鏈陽殺菌素B(macrolidelincosamidestreptogramin B,MLSB)、β內酰胺類、四環(huán)素類、喹諾酮*胺酰醇類、*等,按抗性機制分類抗生素失活檢出率高,其后依次為外排和細胞保護機制;而抗性基因豐度與轉座酶基因豐度、銅、*含量具有正相關關系.較高的抗性基因豐度可能由于在抗生素的選擇壓力下抗性基因宿主細菌的增殖,以及某些抗性基因通過移動基因元件( genetic elements)發(fā)生基因水平轉移(Horizontal gene transfer).

  在畜禽養(yǎng)殖廢水方面,四環(huán)素類、磺胺類、大環(huán)內脂類抗生素的抗性基因研究較多,按抗性機制分類,畜禽養(yǎng)殖廢水中抗性基因分布特征詳見表 1.)測試了豬場廢水中不同機制的四環(huán)素抗性基因,發(fā)現核糖體保護(靶向保護)抗性基因(tetQ、tetM、tetW、tetO)比外排泵機制抗性基因(tetA、tetB、tetC、tetL)、酶修飾(抗生素失活機制)抗性基因(tetX)豐度高,其在豬場廢水中豐度分別為9.25×10-2、5.53×10-2、1.69×10-2和1.32×10-2 copies/16S rRNA.而和)研究也表明tetQ、tetM、tetW、tetO在豬場廢水中具有較高的豐度.)研究了豬糞水厭氧發(fā)酵土壤生態(tài)系統(tǒng)中3種核糖體保護機制的四環(huán)素類抗性基因豐度tetQ>tetO>tetW,其中tetQ平均豐度高1.84×10-1 copies/16S rRNA.)調查了上海地區(qū)豬場和牛場廢水中磺胺類和四環(huán)素類抗性基因,含量高的分別為sulA(108~1010 copies · mL-1)和tetW(106~107 copies · mL-1),而sulIII含量與磺胺類抗生素濃度的相關性較好,這可能與磺胺類抗生素易生物降解性有關;tetM含量與四環(huán)素類抗生素濃度相關性較弱.)也指出TC與tet無顯著相關性.除四環(huán)素類與磺胺類抗生素之外,泰樂菌素是應用廣泛的獸用抗生素之一,可能引起大環(huán)內脂類抗性基因以及MLSB的多重抗性基因豐度的提高.)對3家豬場大環(huán)內脂抗性基因erm進行了定量檢測,廢水中ermB、ermF含量較高(在108~1010 copies · mL-1之間),而ermX在104~106 copies · mL-1范圍.通過寡聚糖雜探針測試方法,發(fā)現豬糞水和氧化塘廢水中50%的rRNA攜帶MLSB多重抗性基因.

養(yǎng)牛場污水處理價格


表1 基于抗性機制分類畜禽養(yǎng)殖廢水中抗性基因賦存特征

  針對抗性基因與基因轉移元件的相關性,sulI與intI1具有極顯著的相關性(p<0.001;r=0.803),這可能由于sulI經常與一類整合子結合在一起指出tetM可能由轉座子Tn916Tn1545和結合質粒介導.

  3 畜禽養(yǎng)殖廢水中重金屬對抗生素抗性基因的影響 

  畜禽養(yǎng)殖過程在飼料中添加銅、鋅等重金屬引起豬糞水中抗銅、抗鋅細菌的增加,畜禽養(yǎng)殖廢水存在抗生素與重金屬復合污染特征.在重金屬的選擇壓力下,畜禽養(yǎng)殖糞水中重金屬抗性基因豐度較高.對豬飼料、腸道和糞便中抗銅細菌進行了分析鑒定,發(fā)現豬糞中抗銅大腸桿菌與飼料中硫酸銅添加量正相關,分離得到的239株抗銅細菌中攜帶抗銅基因pcoA、pcoC、pcoD,攜帶抗銅基因的細菌也同時攜帶*和四環(huán)素的抗性基因(strA、strB、tetB).而研究了豬糞中抗鋅細菌的分布規(guī)律,結果表明豬糞中普遍存在抗鋅細菌,抗鋅大腸桿菌的檢出率與飼料中氧化鋅的添加成正相關關系;抗鋅菌株主要攜帶抗鋅基因zntA.

  畜禽養(yǎng)殖環(huán)境重金屬的污染不僅引起重金屬耐受菌及抗銅、抗鋅基因豐度的提高,可能存在重金屬與抗生素的協(xié)同選擇作用(coselection),重金屬的選擇壓力可能使抗生素抗性基因豐度維持在較高水平.歐盟已禁止抗生素飼料添加劑的使用,但減少抗生素使用并不會阻止抗性基因的傳播,養(yǎng)殖場重金屬使用可能會通過協(xié)同選擇增加抗生素抗性基因的傳播.研究發(fā)現磺胺類sulA與重金屬Hg、Cu、Zn具有顯著相關關系.研究發(fā)現豬場廢水中高濃度的Cu和Zn顯著提高了耐β內酰胺大腸桿菌的豐度.


 圖1 豬糞分離的具有重金屬與抗生素協(xié)同抗性的質粒pMC2

  指出重金屬和抗生素抗性的協(xié)同選擇機制主要是因為重金屬和抗生素的抗性機制的耦合作用,包括叉抗性(crossresistance)和協(xié)同抗性(coresistance).叉抗性是某種抗性基因編碼的酶或蛋白具有提高細胞耐受多種抑菌物質(如抗生素或重金屬)的能力,如多重藥劑外排泵(multi drug efflux pumps),其可以將毒性物質迅速排出細胞外.而協(xié)同抗性指的是具有兩種或多種抗性功能的基因相互鄰近并在一個移動基因元件上.如豬糞中分離的質粒pMC2,攜帶大環(huán)內脂、四環(huán)素等抗生素抗性基因和汞、鉻等重金屬抗性基因,具有很強的移動和結合能力總結了畜禽糞便中重金屬引起抗生素協(xié)同抗性的小濃度(Minimum coselective concentration,MCC),Cu和Zn的MCC值分別為11.79和22.75 mg · kg-1 DM,但作者也指出非常缺乏畜禽養(yǎng)殖廢水重金屬對抗生素抗性基因協(xié)同選擇的數據.另外,養(yǎng)殖廢水復合污染的特性也增加了抗性基因研究的難度.4 畜禽養(yǎng)殖廢水處理工藝對抗性基因的消減 (Removal of antibiotic resistance genes during process of animal wastewater treatment) 4.1 常規(guī)生物處理工藝

  厭氧消化是畜禽養(yǎng)殖場采用為廣泛的廢水處理工藝.指出厭氧過程抑制細菌代謝,對抗性基因傳播具有抑制作用.指出ARGs去除與厭氧菌群結構具有相關性,主要表現在抗性基因的宿主菌群在厭氧環(huán)境中的變化.

  針對厭氧消化處理養(yǎng)殖廢水抗性基因的變化,現場調研較多,參數優(yōu)化的研究較少,針對豬場廢水的研究較多,其他種類的養(yǎng)殖廢水研究較少,不同生物處理工藝抗性基因賦存特征詳見表 2.研究了不同規(guī)模豬場的廢水生物處理系統(tǒng)抗性基因去除效果,結果表明厭氧消化和好氧生物處理對tetA、tetW、sul1、sul2、blaTEM抗性基因平均去除率在33.3%~97.56%.考察了環(huán)境溫度下厭氧消化在不同季節(jié)的處理效果,夏季ermB、ermF、ermX的去除效果優(yōu)于冬季,夏季厭氧消化出水較豬場原廢水ermB、ermF、ermX和tetG平均降低1.2、0.8、0.7和1.1 log copies · mL-1,表明溫度是厭氧消化去除抗性基因的重要控制指標.針對溫度對厭氧消化抗性基因消減的影響,)指出高溫厭氧消化對四環(huán)素類抗性基因tetA、tetO、tetW、tetX有顯著去除,它們的去除符合一級反應動力學模型,而tetL只存在于革蘭氏陰性菌,厭氧處理對其去除效果不明顯,而在好氧高溫處理(55 ℃)過程中tetL豐度表現出線性降低趨勢.比較了高溫和中溫厭氧消化對牛糞中耐藥菌的影響,結果表明高溫可全部消滅多重耐藥菌(抗*、*、*、*、*等),而中溫發(fā)酵只可以去除多重耐藥菌1~2 log cfu · mL-1.

豬場廢水生物處理過程中抗性基因的賦存特性

  除厭氧消化工藝以外,氧化塘、人工濕地也是畜禽養(yǎng)殖場廣泛使用的廢水處理工藝.Joy等.調查了氧化塘儲存豬場廢水40 d抗性基因的變化,ermB和ermF的豐度分別降低了50%~60%和80%~90%,而tetX和tetQ豐度的消減符合一級反應動力學模型.將氧化塘處理豬場廢水后抗性基因的去除趨勢歸為兩類,一類是相對豐度大幅降低甚至低于檢測限,包括tetB、tetL;另一類為經處理后豐度不變甚至有所提高,包括tetG、tetM、tetO和tetX,可能因為這類基因常位于轉移原件上,在廢水中發(fā)生了基因的水平轉移.鄭加玉等采用水平流人工濕地處理豬場廢水,結果表明tetW、tetM和tetO的濃度平均去除率分別為95.73%、92.21%和95.05%;可能由于土壤對抗性基因的吸附作用,濕地土壤中抗性基因的豐度有明顯升高現象.Liu等模擬垂直流人工濕地中添加沸石研究抗性基因的消減規(guī)律,發(fā)現在HRT為30 h時豬場廢水抗性基因去除效果較好.

  4.2 膜生物反應器(Membrane bioreactor,MBR)工藝

  膜分離技術近年已在畜禽養(yǎng)殖廢水處理領域得到了一定的研究與應用,并日益得到重視.例如,Padmasiri等采用厭氧MBR處理豬場廢水,有機負荷為1.0 kg · m-3 · d-1高于其他厭氧消化工藝采用好氧MBR處理豬場厭氧消化液TN負荷0.11 kg · m-3 · d-1較高.然而針對MBR處理畜禽養(yǎng)殖廢水抗性基因去除規(guī)律的研究較少.Du等調研了污水處理廠采用A2OMBR工藝處理生活和工業(yè)混合廢水對四環(huán)素類和磺胺類抗性基因的去除效果,結果表明MBR工藝對tetG、tetW、tetX、sul1和intI1分別去除了2.20、2.90、1.71、2.15和2.07 log copies · mL-1,膜出水抗性基因豐度仍然較高(2.85~4.97 log copies · mL-1),然而作者并未給出膜孔徑等膜分離工藝參數.

  同常規(guī)生物處理工藝相比,MBR的生物量高,可能存在較大的抗性基因水平轉移風險.Yang等以RP4質粒作為水平轉移研究對象,研究了MBR中抗性基因的水平轉移效率,結果表明RP4在MBR中維持較高豐度104 copies/mg · biosolid,具有較高的水平轉移效率(2.76×10-5/recipient),而RP4在常規(guī)活性污泥法的水平轉移效率約4×10-6 /recipient;盡管存在較高的水平轉移效率,但由于微濾膜(PVDF,0.22 μm)的截留作用,出水檢測不到攜帶抗性基因的RP4.由于膜的截留,一方面可消減膜出水的抗性基因濃度,另一方面導致反應器內污泥濃度高,可能使抗性基因在反應器內積累,提高了污泥中抗性基因的水平傳播.污泥是重要的抗性基因蓄積庫,經過堆肥或厭氧消化處理后作為肥料土地利用,污泥的土地利用存在抗性基因的污染隱患.

  4.3 消毒工藝

  已有研究考察了消毒工藝(包括紫外、臭氧、加氯)處理畜禽養(yǎng)殖廢水時對耐藥菌的殺滅效果.研究發(fā)現,加氯量和臭氧用量分別為30 mg · L-1和100 mg · L-1時,豬場氧化塘廢水中細菌總數分別去除了2.2~3.4 log cfu · mL-1和3.3~3.9 log cfu · mL-1,然而林可酰胺、*、磺胺甲惡唑耐藥菌對加氯消毒不敏感,而四環(huán)素耐藥菌對加氯消毒敏感,臭氧對耐藥菌的影響并未給出相應結果.加氯對抗*腸球菌具有較好的滅殺作用.而GomezAlvarez等研究加氯消毒對飲用水中抗性基因的影響,宏基因組數據表明加氯消毒后飲用水中仍含有編碼β內酰胺酶(bla)、外排泵等抗生素抗性基因,表明耐受液氯氧化性的細菌同時攜帶抗生素抗性基因.關于紫外和臭氧對畜禽養(yǎng)殖廢水抗性基因的去除研究較為缺乏,研究了紫外滅菌對市政排水抗性基因消減的影響,結果表明紫外強度為249.5 mJ · cm-2時對抗性基因消減效果佳,tetX和16S rRNA分別去除了0.58和0.60 log.Oh等采用模擬實驗研究了臭氧對耐藥性埃希氏大腸桿菌(Eschericia coli, E. coli)的去除,結果表明臭氧劑量為3 mg · L-1時耐藥性E. coli去除了1 log.

  4.4 組合工藝

  畜禽養(yǎng)殖廢水通常采用厭氧好氧組合工藝進行處理.Chen等在監(jiān)測某豬場夏季廢水處理工藝對抗性基因去除效果時,發(fā)現經過厭氧消化好氧濾池處理,ermB豐度分別降低了1.2 log、0.9 log copies · mL-1,而ermB在出水儲存池中已低于檢測限;tetG在厭氧、好氧過程分別降低了1.1 log、3.4 log copies · mL-1.對我國東部某豬場廢水采用厭氧消化與氧化塘組合工藝去除抗性基因的效果進行了調查,發(fā)現tetO、tetQ、tetW有明顯去除,豐度從10-1降至10-3 copies/16S rRNA,這可能由于tetQ和tetW宿主細菌多為厭氧菌,而tetO多為好氧菌攜帶,這些抗性基因無法在厭氧好氧替環(huán)境中維持.而關于生物處理與消毒組合工藝對畜禽廢水中抗性基因的去除作用,研究結果非常缺乏.

  5 畜禽養(yǎng)殖廢水農田利用對土壤和植物中抗性基因的影響

  由于畜禽養(yǎng)殖廢水中富含有機質、氮、磷等營養(yǎng)物質,通常經過厭氧發(fā)酵、氧化塘等工藝處理后,作為肥水還田利用,這既節(jié)約了處理成本,也促進了養(yǎng)分循環(huán)利用,目前我國、美國、歐洲等都推行畜禽養(yǎng)殖廢水的農田利用.然而,畜禽養(yǎng)殖廢水農田利用可能產生抗性基因從養(yǎng)殖場向農田土壤的傳播風險.

  土壤是重要的抗性基因儲存庫,其中主要的抗性基因來源包括土壤中固有的抗性微生物所攜帶的抗性基因,以及外源進入土壤中抗性微生物所攜帶的抗性基因,但有關土壤中抗性基因的研究較為缺乏.)指出豬糞施用于農田存在抗性基因的水平轉移風險,由于糞源微生物與土壤微生物不同,糞源微生物進入土壤后在幾個月中大量消失,但抗性基因可通過水平轉移進入土壤本土微生物中,進而引起土壤微生物抗性基因豐度的增加.而研究發(fā)現牛糞農田利用引起土壤中抗性基因blaCEP豐度的提高是由于攜帶抗性基因的假單胞菌(Pseudomonas sp.)和紫色桿菌(Janthinobacterium sp.)的增殖,而這兩種細菌來自于土壤,而非糞便引入.糞便農田利用可引起抗性基因豐度提高,但其微生物學機制仍不明確.

  畜禽養(yǎng)殖廢水還田利用一定時間內會顯著提高土壤中抗性基因豐度.對北京某豬場周邊土壤四環(huán)素抗性基因進行了定量檢測,發(fā)現豐度較高的四環(huán)素類抗性基因為tetB/P、tetT、tetM、tetO和tetW,其基因拷貝數范圍在106~108 copies · g-1 DM,并認為tet抗性基因存在由畜禽養(yǎng)殖向土壤的轉移.的研究發(fā)現,豬場廢水農田利用后土壤中抗性基因tetQ、tetZ和整合子intI1、intI2分別提高了500、9和6、123倍.的研究發(fā)現,施用豬場厭氧消化液的土壤中四環(huán)素類抗性基因豐度為105~108 copies · g-1,顯著高于未施用豬場廢水的土壤,而作物類型對抗性基因的豐度影響較小.)研究了抗性基因沿土壤深度的變化,結果表明tetO、tetW、tetM、tetA豐度沿土壤深度在0~80 cm逐漸降低.)發(fā)現,飼料中添加*顯著影響豬糞還田后土壤中sul抗性基因的變化,添加磺胺處理組在第60 dsul1抗性基因豐度降低至10-3 copies/16S rRNA、而sul2升高至10-1 copies/16S rRNA,飼料未添加*處理組sul1和sul2均呈現降低趨勢,豐度分別為10-6和10-5 copies/16S rRNA研究了施用豬糞的玉米根際土壤與非根際土壤微生物群落變化,結果表明根際土壤sul1和sul2抗性基因略低于非根際土壤,可能與根際環(huán)境*降解速度快有關,而sul基因常與質粒結合,根際土壤是質粒發(fā)生結合轉移的熱點區(qū)域.考察了土壤類型對抗性基因的影響,發(fā)現壤土中sul2基因豐度高于砂土.)采用宏基因組文庫研究了土壤中不可培養(yǎng)細菌攜帶的抗性基因,結果表明豬糞還田的土壤攜帶四環(huán)素類、*、氨基糖胺類、*類抗性基因.同未施用畜禽糞便的土壤相比,發(fā)現施用豬糞的土壤中大環(huán)內脂類抗性基因(ermA、ermB、ermF等)和質粒(IncQ、IncW)豐度有提高.發(fā)現攜帶多重抗性的質粒IncP-1ε在糞便施用后的土壤中擴散.

  在畜禽養(yǎng)殖糞污還田利用時,不同種類抗性基因隨時間的消減規(guī)律各不相同.指出施用豬糞后,土壤中抗性基因表現出先增加后降低趨勢,但抗性基因相對豐度在1年的施肥間隔后無法回到本底值,尤其是sul1、ermB、strB、intI1、IncW repA在土壤中豐度較高.的研究發(fā)現,豬糞還田后sul1、sul2、ermF快速升高,隨后ermF消減速度快,在施肥43~55 d后降至本底水平,而tetG、tetO、tetW在施肥土壤和控制土壤中無差異;并且作者指出糞便還田后1~2個月內土壤抗性基因豐度較高,應采取措施防止抗性基因進入水體或鄰近土壤中.不同類型抗生素的抗性基因在土壤中恢復本底值的時間不同,例如,MLS抗性基因恢復到土壤本底值需要20 d,sul1需要2個月,而四環(huán)素類抗性菌株需要6個月.關于畜禽養(yǎng)殖廢水對養(yǎng)殖場受納水體的影響,發(fā)現豬場氧化塘下游河流中250 m仍可得四環(huán)素抗性基因tetM.研究了福建閩江流域E. coli的耐藥性,畜禽養(yǎng)殖廢水可能是該流域抗生素耐藥率高的重要因素,河水分離的E. coli中41%攜帶一類整合子,整合子介導的抗性基因包括aadA1、drfA1、drfA27、arr3等.

  有關土壤環(huán)境中重金屬與抗生素抗性基因的研究較少.指出土壤中Cu含量(0~140 mg · kg-1DM)與tetM、tetW、ermB、ermF具有相關性,且blaOXA與Cu具有極顯著相關性;Zn含量(0~38 mg · kg-1DM)與所測抗性基因的相關性不顯著;因此畜禽養(yǎng)殖糞污在土壤環(huán)境中可能存在重金屬與抗生素抗性基因的協(xié)同選擇問題,需要進一步開展研究.

  畜禽養(yǎng)殖廢水澆灌蔬菜引起蔬菜攜帶抗性基因和耐藥菌的研究非常少,然而該途徑可能是畜禽養(yǎng)殖源抗性基因進入食物鏈的途徑之一.對施用雞糞種植的蔬菜內生菌進行了耐藥性測試,發(fā)現芹菜、小白菜、黃瓜中*耐藥菌的比例分別為16.9%~86.33%、21.76%~91.31%和0.21%~0.44%,蔬菜內生菌具有抗生素抗性的原因可能是耐藥菌通過土壤進入植物,或者由于土壤中抗性基因被植物吸收,這需要進一步深入研究.的研究發(fā)現,施用豬糞的蔬菜表皮抗性基因的檢出率較高,包括IncP oriV、sul2、tet(BT)、ermAF、qnrB、blaPSE和blaOXA20等抗性基因,并指出人類直接食用蔬菜是一種接觸土壤耐藥菌和抗性基因的途徑.具體參見污水寶商城資料或http://www.dowater。。com更多相關技術文檔。

  6 結語與展望

  盡管近年來畜禽養(yǎng)殖廢水處理與利用過程抗性基因已開展了一定的研究,但現有研究較多采用現場調研方式,對抗性基因的轉歸機制和去除研究不足,缺乏畜禽養(yǎng)殖廢水生物處理與農田利用全過程中抗性基因的系統(tǒng)性研究,難以提出抗性基因減控的有效策略.因此,本文提出如下研究展望:

  1)已有研究大多針對畜禽養(yǎng)殖廢水生物處理和農田利用過程中四環(huán)素類與磺胺類抗性基因的分布規(guī)律,但有關β內酰胺類、喹諾酮類抗性基因及其耐藥菌的研究較為缺乏,而后者抗生素多用于人類疾病治療,建議今后加強這方面的研究.

  2)畜禽養(yǎng)殖廢水抗性基因的消減機制尚不明確.現有畜禽養(yǎng)殖廢水中抗性基因消減規(guī)律的研究不多,對抗性基因消減規(guī)律的解析不足.已有研究主要考察生物處理對抗性基因豐度消減的影響,較少關注功能菌群、工藝操作參數、環(huán)境參數與耐藥菌群結構(抗性基因宿主細菌)的相互關系.

  3)不同畜禽養(yǎng)殖廢水和土壤類型、抗性基因類型對養(yǎng)殖廢水農田利用抗性基因的傳播規(guī)律不可一概而論,缺乏系統(tǒng)性的機制研究.需要從畜禽養(yǎng)殖廢水生物處理和農田利用全過程對耐藥菌、抗性基因轉歸和控制措施進行系統(tǒng)研究和綜合評價.

 



會員登錄

×

請輸入賬號

請輸入密碼

=請輸驗證碼

收藏該商鋪

X
該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時間回復您~
產品對比 二維碼

掃一掃訪問手機商鋪

對比框

在線留言