聯(lián)系電話
養(yǎng)殖場污水處理設備公司
養(yǎng)殖污水概況
隨著我國畜禽業(yè)的迅猛發(fā)展,養(yǎng)殖污水污染將不斷加劇,其污染防治迫在眉睫。養(yǎng)殖污水具有典型的“三高”特征,CODCR高達3000~12000MG/L,氨氮高達800~2200MG/L,SS超標數(shù)十倍。限于養(yǎng)殖業(yè)是薄利行業(yè),目前的處理工藝僅能針對CODCR的大幅削減,而對氨氮達標排放尚存在很大的技術經(jīng)濟難度。規(guī)?;笄蒺B(yǎng)殖污水處理目前已引起養(yǎng)殖場業(yè)主及有關部門的高度重視,采取一系列防治措施及選用經(jīng)濟、高效的處理技術已刻不容緩。隨著污水排放標準日益更新,高濃度養(yǎng)殖污水達標排放問題更加突出。
養(yǎng)殖污水處理設備適用范圍
適用于各種養(yǎng)殖場(養(yǎng)雞場、養(yǎng)豬場、養(yǎng)牛場等)產(chǎn)生的污水。
消毒工藝
已有研究考察了消毒工藝(包括紫外、臭氧、加氯)處理畜禽養(yǎng)殖廢水時對耐藥菌的殺滅效果.研究發(fā)現(xiàn),加氯量和臭氧用量分別為30 mg · L-1和100 mg · L-1時,豬場氧化塘廢水中細菌總數(shù)分別去除了2.2~3.4 log cfu · mL-1和3.3~3.9 log cfu · mL-1,然而林可酰胺、*、磺胺甲惡唑耐藥菌對加氯消毒不敏感,而四環(huán)素耐藥菌對加氯消毒敏感,臭氧對耐藥菌的影響并未給出相應結(jié)果.加氯對抗*腸球菌具有較好的滅殺作用.而GomezAlvarez等研究加氯消毒對飲用水中抗性基因的影響,宏基因組數(shù)據(jù)表明加氯消毒后飲用水中仍含有編碼β內(nèi)酰胺酶(bla)、外排泵等抗生素抗性基因,表明耐受氧化性的細菌同時攜帶抗生素抗性基因.關于紫外和臭氧對畜禽養(yǎng)殖廢水抗性基因的去除研究較為缺乏,研究了紫外滅菌對市政排水抗性基因消減的影響,結(jié)果表明紫外強度為249.5 mJ · cm-2時對抗性基因消減效果,tetX和16S rRNA分別去除了0.58和0.60 log.Oh等采用模擬實驗研究了臭氧對耐藥性埃希氏大腸桿菌(Eschericia coli, E. coli)的去除,結(jié)果表明臭氧劑量為3 mg · L-1時耐藥性E. coli去除了1 log.
4.4 組合工藝
畜禽養(yǎng)殖廢水通常采用厭氧好氧組合工藝進行處理.Chen等在監(jiān)測某豬場夏季廢水處理工藝對抗性基因去除效果時,發(fā)現(xiàn)經(jīng)過厭氧消化好氧濾池處理,ermB豐度分別降低了1.2 log、0.9 log copies · mL-1,而ermB在出水儲存池中已低于檢測限;tetG在厭氧、好氧過程分別降低了1.1 log、3.4 log copies · mL-1.對我國東部某豬場廢水采用厭氧消化與氧化塘組合工藝去除抗性基因的效果進行了調(diào)查,發(fā)現(xiàn)tetO、tetQ、tetW有明顯去除,豐度從10-1降至10-3 copies/16S rRNA,這可能由于tetQ和tetW宿主細菌多為厭氧菌,而tetO多為好氧菌攜帶,這些抗性基因無法在厭氧好氧交替環(huán)境中維持.而關于生物處理與消毒組合工藝對畜禽廢水中抗性基因的去除作用,研究結(jié)果非常缺乏.
5 畜禽養(yǎng)殖廢水農(nóng)田利用對土壤和植物中抗性基因的影響
由于畜禽養(yǎng)殖廢水中富含有機質(zhì)、氮、磷等營養(yǎng)物質(zhì),通常經(jīng)過厭氧發(fā)酵、氧化塘等工藝處理后,作為肥水還田利用,這既節(jié)約了處理成本,也促進了養(yǎng)分循環(huán)利用,目前我國、美國、歐洲等都推行畜禽養(yǎng)殖廢水的農(nóng)田利用.然而,畜禽養(yǎng)殖廢水農(nóng)田利用可能產(chǎn)生抗性基因從養(yǎng)殖場向農(nóng)田土壤的傳播風險.
土壤是重要的抗性基因儲存庫,其中主要的抗性基因來源包括土壤中固有的抗性微生物所攜帶的抗性基因,以及外源進入土壤中抗性微生物所攜帶的抗性基因,但有關土壤中抗性基因的研究較為缺乏.)指出豬糞施用于農(nóng)田存在抗性基因的水平轉(zhuǎn)移風險,由于糞源微生物與土壤微生物不同,糞源微生物進入土壤后在幾個月中大量消失,但抗性基因可通過水平轉(zhuǎn)移進入土壤本土微生物中,進而引起土壤微生物抗性基因豐度的增加.而研究發(fā)現(xiàn)牛糞農(nóng)田利用引起土壤中抗性基因blaCEP豐度的提高是由于攜帶抗性基因的假單胞菌(Pseudomonas sp.)和紫色桿菌(Janthinobacterium sp.)的增殖,而這兩種細菌來自于土壤,而非糞便引入.糞便農(nóng)田利用可引起抗性基因豐度提高,但其微生物學機制仍不明確.
畜禽養(yǎng)殖廢水還田利用一定時間內(nèi)會顯著提高土壤中抗性基因豐度.對北京某豬場周邊土壤四環(huán)素抗性基因進行了定量檢測,發(fā)現(xiàn)豐度較高的四環(huán)素類抗性基因為tetB/P、tetT、tetM、tetO和tetW,其基因拷貝數(shù)范圍在106~108 copies · g-1 DM,并認為tet抗性基因存在由畜禽養(yǎng)殖向土壤的轉(zhuǎn)移.的研究發(fā)現(xiàn),豬場廢水農(nóng)田利用后土壤中抗性基因tetQ、tetZ和整合子intI1、intI2分別提高了500、9和6、123倍.的研究發(fā)現(xiàn),施用豬場厭氧消化液的土壤中四環(huán)素類抗性基因豐度為105~108 copies · g-1,顯著高于未施用豬場廢水的土壤,而作物類型對抗性基因的豐度影響較小.)研究了抗性基因沿土壤深度的變化,結(jié)果表明tetO、tetW、tetM、tetA豐度沿土壤深度在0~80 cm逐漸降低.)發(fā)現(xiàn),飼料中添加*顯著影響豬糞還田后土壤中sul抗性基因的變化,添加磺胺處理組在第60 dsul1抗性基因豐度降低至10-3 copies/16S rRNA、而sul2升高至10-1 copies/16S rRNA,飼料未添加*處理組sul1和sul2均呈現(xiàn)降低趨勢,豐度分別為10-6和10-5 copies/16S rRNA研究了施用豬糞的玉米根際土壤與非根際土壤微生物群落變化,結(jié)果表明根際土壤sul1和sul2抗性基因略低于非根際土壤,可能與根際環(huán)境*降解速度快有關,而sul基因常與質(zhì)粒結(jié)合,根際土壤是質(zhì)粒發(fā)生結(jié)合轉(zhuǎn)移的熱點區(qū)域.考察了土壤類型對抗性基因的影響,發(fā)現(xiàn)壤土中sul2基因豐度高于砂土.)采用宏基因組文庫研究了土壤中不可培養(yǎng)細菌攜帶的抗性基因,結(jié)果表明豬糞還田的土壤攜帶四環(huán)素類、*、氨基糖胺類、*類抗性基因.同未施用畜禽糞便的土壤相比,發(fā)現(xiàn)施用豬糞的土壤中大環(huán)內(nèi)脂類抗性基因(ermA、ermB、ermF等)和質(zhì)粒(IncQ、IncW)豐度有提高.發(fā)現(xiàn)攜帶多重抗性的質(zhì)粒IncP-1ε在糞便施用后的土壤中擴散.
在畜禽養(yǎng)殖糞污還田利用時,不同種類抗性基因隨時間的消減規(guī)律各不相同.指出施用豬糞后,土壤中抗性基因表現(xiàn)出先增加后降低趨勢,但抗性基因相對豐度在1年的施肥間隔后無法回到本底值,尤其是sul1、ermB、strB、intI1、IncW repA在土壤中豐度較高.的研究發(fā)現(xiàn),豬糞還田后sul1、sul2、ermF快速升高,隨后ermF消減速度zui快,在施肥43~55 d后降至本底水平,而tetG、tetO、tetW在施肥土壤和控制土壤中無差異;并且作者指出糞便還田后1~2個月內(nèi)土壤抗性基因豐度較高,應采取措施防止抗性基因進入水體或鄰近土壤中.不同類型抗生素的抗性基因在土壤中恢復本底值的時間不同,例如,MLS抗性基因恢復到土壤本底值需要20 d,sul1需要2個月,而四環(huán)素類抗性菌株需要6個月.關于畜禽養(yǎng)殖廢水對養(yǎng)殖場受納水體的影響,發(fā)現(xiàn)豬場氧化塘下游河流中250 m仍可得四環(huán)素抗性基因tetM.研究了福建閩江流域E. coli的耐藥性,畜禽養(yǎng)殖廢水可能是該流域抗生素耐藥率高的重要因素,河水分離的E. coli中41%攜帶一類整合子,整合子介導的抗性基因包括aadA1、drfA1、drfA27、arr3等.
有關土壤環(huán)境中重金屬與抗生素抗性基因的研究較少.指出土壤中Cu含量(0~140 mg · kg-1DM)與tetM、tetW、ermB、ermF具有相關性,且blaOXA與Cu具有極顯著相關性;Zn含量(0~38 mg · kg-1DM)與所測抗性基因的相關性不顯著;因此畜禽養(yǎng)殖糞污在土壤環(huán)境中可能存在重金屬與抗生素抗性基因的協(xié)同選擇問題,需要進一步開展研究.
畜禽養(yǎng)殖廢水澆灌蔬菜引起蔬菜攜帶抗性基因和耐藥菌的研究非常少,然而該途徑可能是畜禽養(yǎng)殖源抗性基因進入食物鏈的途徑之一.對施用雞糞種植的蔬菜內(nèi)生菌進行了耐藥性測試,發(fā)現(xiàn)芹菜、小白菜、黃瓜中*耐藥菌的比例分別為16.9%~86.33%、21.76%~91.31%和0.21%~0.44%,蔬菜內(nèi)生菌具有抗生素抗性的原因可能是耐藥菌通過土壤進入植物,或者由于土壤中抗性基因被植物吸收,這需要進一步深入研究.的研究發(fā)現(xiàn),施用豬糞的蔬菜表皮抗性基因的檢出率較高,包括IncP oriV、sul2、tet(BT)、ermAF、qnrB、blaPSE和blaOXA20等抗性基因,并指出人類直接食用蔬菜是一種接觸土壤耐藥菌和抗性基因的途徑.具體參見污水寶商城資料或http://www.dowater。。com更多相關技術文檔。
6 結(jié)語與展望
盡管近年來畜禽養(yǎng)殖廢水處理與利用過程抗性基因已開展了一定的研究,但現(xiàn)有研究較多采用現(xiàn)場調(diào)研方式,對抗性基因的轉(zhuǎn)歸機制和去除研究不足,缺乏畜禽養(yǎng)殖廢水生物處理與農(nóng)田利用全過程中抗性基因的系統(tǒng)性研究,難以提出抗性基因減控的有效策略.因此,本文提出如下研究展望:
1)已有研究大多針對畜禽養(yǎng)殖廢水生物處理和農(nóng)田利用過程中四環(huán)素類與磺胺類抗性基因的分布規(guī)律,但有關β內(nèi)酰胺類、喹諾酮類抗性基因及其耐藥菌的研究較為缺乏,而后者抗生素多用于人類疾病治療,建議今后加強這方面的研究.
2)畜禽養(yǎng)殖廢水抗性基因的消減機制尚不明確.現(xiàn)有畜禽養(yǎng)殖廢水中抗性基因消減規(guī)律的研究不多,對抗性基因消減規(guī)律的解析不足.已有研究主要考察生物處理對抗性基因豐度消減的影響,較少關注功能菌群、工藝操作參數(shù)、環(huán)境參數(shù)與耐藥菌群結(jié)構(抗性基因宿主細菌)的相互關系.
3)不同畜禽養(yǎng)殖廢水和土壤類型、抗性基因類型對養(yǎng)殖廢水農(nóng)田利用抗性基因的傳播規(guī)律不可一概而論,缺乏系統(tǒng)性的機制研究.需要從畜禽養(yǎng)殖廢水生物處理和農(nóng)田利用全過程對耐藥菌、抗性基因轉(zhuǎn)歸和控制措施進行系統(tǒng)研究和綜合評價.
養(yǎng)殖場污水處理設備公司
如果你有這方面的需要,咨詢,24小時
濰坊中能美亞環(huán)保公司售后服務
隨著公司的不時壯大,屠宰廢水處置設備/養(yǎng)殖廢水處置設備/煤礦廢水處置設備等等領域均有參與銷售。公司現(xiàn)如今在黑龍江的哈爾濱,吉林的長春,遼寧省大連市,內(nèi)蒙包頭,寧夏,新疆烏魯木齊,北京,天津,河北石家莊,河南鄭州,洛陽,甘肅蘭州,西藏拉薩,四川成都,湖南長沙,湖北武漢,江西南昌,福建福州,青海,云南昆明,廣西南寧,廣東深圳,廣州,江蘇杭州,蘇州,安徽合肥,山東濟南均有銷售網(wǎng)絡,并且像比較小些的縣級市,比如說北京、天津、上海、重慶市。香港、澳門。山西:大同,太原,陽泉,長治,晉中,呂梁,晉城,侯馬,臨汾,運城,忻州。石家莊、唐山、秦皇島、邯鄲、邢臺、保定、張家口、承德、滄州、廊坊、衡水市。辛集、藁城、晉州、新樂、鹿泉、遵化、遷安、武安、南宮、沙河、涿州、定州、安國、高碑店、泊頭、任丘、黃驊、河間、霸州、三河、冀州、深州市。呼和浩特、包頭、烏海、赤峰、通遼、鄂爾多斯、呼倫貝爾、巴彥淖爾、烏蘭察布市。霍林郭勒、滿洲里、牙克石、扎蘭屯、根河、額爾古納、豐鎮(zhèn)、錫林浩特、二連浩特、烏蘭浩特、阿爾山市。遼寧省沈陽、大連、鞍山、撫順、本溪、丹東、錦州、營口、阜新、遼陽、盤錦、鐵嶺、向陽、葫蘆島市等多地都有設備投放點及售后服務點。